Turunan Fungsi Aturan Penjumlahan


Sifat 1.

Jika f dan g fungsi-fungsi yang terdiferensial maka (f + g)(x) = f(x) + g(x) yakni Dx[f(x) + g(x)] = Dx[f(x)] + Dx[g(x)]

Bukti.

Andaikan F(x) = f(x) + g(x)

F'(x) = \\sb{h \to 0} \dfrac{\left [ f(x+h) + g(x+h)\right ]-\left [ f(x) + g(x)\right ]}{h}

= \lim \sb{h \to 0} \dfrac{\left [ f(x+h) + g(x+h) - f(x) - g(x)\right ]}{h}

= \lim _{h \to 0}\left (\dfrac{f(x+h)-f(x)}{h} + \dfrac{g(x+h)-g(x)}{h} \right )

= \lim \sb{h \to 0} \dfrac{f(x+h) - f(x)}{h} + \lim \sb{h \to 0} \dfrac{g(x+h) - g(x)}{h}

= f'(x) + g'(x) \blacksquare

Iklan

2 comments on “Turunan Fungsi Aturan Penjumlahan

  1. Ping-balik: Kuy Belajar Matematika !!!

  2. Ping-balik: Pos blog pertama – Kuy Belajar Matematika !!!

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s