Pembahasan Latihan Soal Olimpiade Matematika (6)


  1. Hitung nilai \frac{7^{502}-7^{500}-144}{7^{500}-3} = …

    PEMBAHASAN :

    \frac{7^{502}-7^{500}-144}{7^{500}-3} = \frac{7^2.7^{500}-7^{500}-144}{7^{500}-3}

    = \frac{49.7^{500}-7^{500}-49.3-3}{7^{500}-3}

    = \frac{49(7^{500}-3)-(7^{500}-3)}{7^{500}-3}

    = \frac{49(7^{500}-3)}{7^{500}-3} \frac{(7^{500}-3)}{7^{500}-3}

    = 49 – 1

    = 48

  2. Hitunglah \frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + … + \frac{1}{\sqrt{9800}+\sqrt{9801}} = …

    PEMBAHASAN :

    Kita harus merasionalan setiap pecahan dengan cara mengalikan dengan sekawannya.

    \frac{1}{1+\sqrt{2}} x \frac{1-\sqrt{2}}{1-\sqrt{2}} = \frac{1-\sqrt{2}}{1-2}

    = \sqrt{2} – 1

    \frac{1}{\sqrt{2}+\sqrt{3}} x \frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{3}} = \frac{\sqrt{2}-\sqrt{3}}{2-3}

    = \sqrt{3}\sqrt{2}

    .

    .

    .

    \frac{1}{\sqrt{9800}+\sqrt{9801}} x \frac{\sqrt{9800}-\sqrt{9801}}{\sqrt{9800}-\sqrt{9801}} = \frac{\sqrt{9800}-\sqrt{9801}}{9800-9801}

    = \sqrt{9801}\sqrt{9800}

    Setelah dirasionalkan, kemudian dijumlahkan semua bilangannya

    (\sqrt{2} – 1) + (\sqrt{3}\sqrt{2}) + (\sqrt{4}\sqrt{3}) + … + (\sqrt{9801}\sqrt{9800})

    = -1 + \sqrt{9801}

    = -1 + 99

    = 98

  3. Jika diketahui a + b = 1 dan a2 + b2 = 2, berapakah a4 + b4 ?

    PEMBAHASAN :

    (a + b)2 = a2 + 2ab + b2

    2ab = (a + b)2 – (a2 + b2)

    = (1)2 – 2

    = -1

    ab = -1/2

    (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

    = a4 + 4ab(a2 + b2) + 6(ab)2 + b4

    a4 + b4 = (a + b)4 – 4ab(a2 + b2) – 6(ab)2

    = (1)4 – 4(-1/2)(2) – 6(-1/2)2

    = 1 + 4 – 3/2

    = 3 1/2

  4. Hasil pembagian dari \frac{(2n)!}{2^n.1.3.5...(2n-3)(2n-1)} adalah …

    PEMBAHASAN :

    \frac{(2n)!}{2^n.1.3.5...(2n-3)(2n-1)} = \frac{1!.2.3...(2n-5)(2n-4)(2n-3)(2n-2)(2n-1)(2n)}{2^n.1.3.5...(2n-3)(2n-1)}

    = \frac{2.4.6...(2n-4)(2n-2)(2n)}{2^n}

    = \frac{2(1).2(2).2(3)...2(n-2)2(n-1)2(n)}{2^n}

    = \frac{(2.2...2)(1.2...(n-2)(n-1)(n))}{2^n}

    = \frac{2^n.n!}{2^n}

    = n!

  5. Jika C3n = 2n, maka C72n = …

    PEMBAHASAN :

    \frac{n!}{(n-3)!.3!} = 2n

    \frac{(n-3)!(n-2)(n-1)n}{(n-3)!.3!} = 2n

    \frac{(n-2)(n-1)n}{3!} = 2n

    (n – 2)(n – 1)n = 2n.3!

    (n – 2)(n – 1) = 2.3!=

    n2 – 3n + 2 = 12

    n2 – 3n – 10 = 0

    (n – 5)(n + 2) = 0

    n = 5 atau n = -2

    untuk n = 5

    C710 = \frac{10!}{(10-7)!.7!}

    = \frac{7!.8.9.10}{3!.7!}

    = \frac{8.9.10}{3!}

    = 4.3.10

    = 120

  6. Koefesien x7 dalam (1 + x)11 adalah …

    PEMBAHASAN :

    Perhatikan segitiga pascal:

    1

    1 1

    1 2 1

    1 3 3 1

    1 4 6 4 1

    1 5 10 10 5 1

    1 6 15 20 15 6 1

    1 7 21 35 35 21 7 1

    1 8 28 56 70 56 28 8 1

    1 9 36 84 126 126 84 36 9 1

    1 10 45 120 210 252 210 120 45 10 1

    1 11 55 165 330 462 462 330 165 55 11 1 Perhatikan penjabaran : (1 + x)11 = 111 + (11)110x1 + (55)19x2 + (165)18x3 + (330)17x4 + (462)16x5 + (462)15x6 + (330)14x7 + (165)13x8 + (55)12x9 + (11)11x10 + x11 Jadi koefesien dari x7 adalah 330

  7. Jika A = \left( \begin{array}{rr} 0 & a\\ 1 & 0\end{array} \right) maka A2009 = …

    PEMBAHASAN :

    A2 = A.A = \left( \begin{array}{rr} 0 & a\\ 1 & 0\end{array} \right) \left( \begin{array}{rr} 0 & a\\ 1 & 0\end{array} \right) = \left( \begin{array}{rr} a & 0\\ 0 & a\end{array} \right)

    A3 = A2.A = \left( \begin{array}{rr} a & 0\\ 0 & a\end{array} \right) \left( \begin{array}{rr} 0 & a\\ 1 & 0\end{array} \right) = \left( \begin{array}{rr} 0 & a^2\\ a & 0\end{array} \right)

    A4 = A3.A = \left( \begin{array}{rr} 0 & a^2\\ a & 0\end{array} \right) \left( \begin{array}{rr} 0 & a\\ 1 & 0\end{array} \right) = \left( \begin{array}{rr} a^2 & 0\\ 0 & a^2\end{array} \right)

    A5 = A4.A = \left( \begin{array}{rr} a^2 & 0\\ 0 & a^2\end{array} \right) \left( \begin{array}{rr} 0 & a\\ 1 & 0\end{array} \right) = \left( \begin{array}{rr} 0 & a^3\\ a^2 & 0\end{array} \right)

    A6 = A5.A = \left( \begin{array}{rr} 0 & a^3\\ a^2 & 0\end{array} \right) \left( \begin{array}{rr} 0 & a\\ 1 & 0\end{array} \right) = \left( \begin{array}{rr} a^3 & 0\\ 0 & a^3\end{array} \right)

    Berdasarkan pola di atas,kita dapat menyimpulkan :

    A2009 = A2008.A = \left( \begin{array}{rr} a^{1004} & 0\\ 0 & a^{1004}\end{array} \right) \left( \begin{array}{rr} 0 & a\\ 1 & 0\end{array} \right) = \left( \begin{array}{rr} 0 & a^{1005}\\ a^{1004} & 0\end{array} \right)

NOTE : silahkan dikoreksi dan berikan komentar jika ada kesalahan atau masih ada keambiguan dalam penyelesaian soal-soal ini.

One comment on “Pembahasan Latihan Soal Olimpiade Matematika (6)

  1. pembahasan No.1 langkah 2 ke Langkah 3 itu tolong dicek ulang mas yah, sepertinya ada kekeliruan dalam pendistribusiannya. terima kasih postingnya.

Tinggalkan Balasan ke Rizal Batalkan balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout /  Ubah )

Foto Google

You are commenting using your Google account. Logout /  Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout /  Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout /  Ubah )

Connecting to %s