Pembuktian Integral cos^2 x dx = ½ x + ¼ sin 2x + C


\int cos2 x dx = \int \dfrac{1 + \cos 2x}{2} dx (Sifat-Sifat Dasar Trigonometri)

= \dfrac{1}{2} (\int 1 dx + \int cos 2x dx)

= \dfrac{1}{2} (x + \dfrac{1}{2} sin 2x) + C

= \dfrac{1}{2} x + \dfrac{1}{4} sin 2x + C \blacksquare

Iklan

29 comments on “Pembuktian Integral cos^2 x dx = ½ x + ¼ sin 2x + C

  1. ini juga ya gan ,,
    integral x+1/akar3-2x-x^2dx
    integral 3/16+x^2dx
    integral e^xsin4xdx
    integral cos^2xsin^2xdx
    integral 1/x^2akar16-x^2dx
    integral x-1/x^3+4x^2+4x=
    tolong ya gan ,,bantu aku please ,,,,
    🙂

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s