Determinan Matriks dengan Metode CHIO


Determinan merupakan suatu fungsi dari himpunan semua matriks persegi ke himpunan semua bilangan real. Determinan matriks A biasanya dinyatakan oleh |A| atau det(A). Terdapat beberapa metode yang digunakan untuk menentukan determinan matriks yaitu metode Sarrus, Ekspansi Kofaktor, dan Kondensasi (Penyusutan) CHIO. Kondensasi CHIO merupakan salah satu metode yang dapat digunakan dalam menentukan determinan matriks yang memiliki ordo n \times n dengan n \geq 3.
Kondensasi CHIO menyusutkan determinan matriks ordo n \times n menjadi ordo (n-1) \times (n-1) dan dikalikan dengan elemen a_{11}. Proses kondensasi ini berakhir pada determinan matriks ordo 2 \times 2.
Tanpa mengurangi perumuman, dalam tulisan ini menggunakan matriks persegi dengan syarat elemen a_{11} \neq 0. Apabila nilai elemen a_{11} = 0 maka dilakukan proses operasi baris/kolom yaitu menukarkan baris/kolom pada determinan matriks untuk memperoleh a_{11} \neq 0.

Perhatikan untuk matrik dengan ordo 3 \times 3. Persamaan yang digunakan untuk metode CHIO ini sebagai berikut.

det(A) = \dfrac{1}{(a_{11})^{3-2}} \begin{vmatrix} \begin{vmatrix} a_{11} &  a_{12}\\ a_{21} & a_{22} \end{vmatrix} & \begin{vmatrix} a_{11} &  a_{13}\\ a_{21} & a_{23} \end{vmatrix}\\ &\\ \begin{vmatrix} a_{11}  & a_{12}\\ a_{31} & a_{32} \end{vmatrix} & \begin{vmatrix} a_{11}  & a_{13}\\ a_{31} & a_{33} \end{vmatrix} \end{vmatrix}

Selanjutnya untuk matrik dengan ordo 4 \times 4. Persamaan yang digunakan untuk metode CHIO ini sebagai berikut.

det(A) = \dfrac{1}{(a_{11})^{4-2}} \begin{vmatrix} \begin{vmatrix} a_{11} &  a_{12}\\ a_{21} & a_{22} \end{vmatrix} & \begin{vmatrix} a_{11} &  a_{13}\\ a_{21} & a_{23} \end{vmatrix} & \begin{vmatrix}  a_{11} & a_{14}\\ a_{21} & a_{24} \end{vmatrix}\\ &&\\  \begin{vmatrix} a_{11} & a_{12}\\ a_{31} & a_{32} \end{vmatrix} &  \begin{vmatrix} a_{11} & a_{13}\\ a_{31} & a_{33} \end{vmatrix} &  \begin{vmatrix} a_{11} & a_{14}\\ a_{31} & a_{34}  \end{vmatrix}\\ &&\\ \begin{vmatrix} a_{11} & a_{12}\\ a_{41} &  a_{42} \end{vmatrix} & \begin{vmatrix} a_{11} & a_{13}\\ a_{41} &  a_{43} \end{vmatrix} & \begin{vmatrix} a_{11} & a_{14}\\  a_{41} & a_{44} \end{vmatrix}\\ \end{vmatrix}

Apabila ukuran matriksnya diperluas atau diperumum menjadi n \times n, maka diperoleh persamaan untuk metode CHIO adalah sebagai berikut.

det(A) = \dfrac{1}{(a_{11})^{n-2}} \begin{vmatrix} \begin{vmatrix} a_{11} &  a_{12}\\ a_{21} & a_{22} \end{vmatrix} & \begin{vmatrix} a_{11} &  a_{13}\\ a_{21} & a_{23} \end{vmatrix} & \ldots & \begin{vmatrix}  a_{11} & a_{1n}\\ a_{21} & a_{2n} \end{vmatrix}\\ &&&\\  \begin{vmatrix} a_{11} & a_{12}\\ a_{31} & a_{32} \end{vmatrix} &  \begin{vmatrix} a_{11} & a_{13}\\ a_{31} & a_{33} \end{vmatrix} &  \ldots & \begin{vmatrix} a_{11} & a_{1n}\\ a_{31} & a_{3n}  \end{vmatrix}\\ &&&\\ \vdots & \vdots & \ddots &  \vdots\\ \begin{vmatrix} a_{11} & a_{12}\\ a_{n1} & a_{n2}  \end{vmatrix} & \begin{vmatrix} a_{11} & a_{13}\\ a_{n1} & a_{n3}  \end{vmatrix} & \ldots & \begin{vmatrix} a_{11} & a_{1n}\\ a_{n1}  & a_{nn} \end{vmatrix}\\ \end{vmatrix}

Contoh 1.

Hitung determinan matriks A = \begin{bmatrix} -2&1&4\\ 3&-5&2\\ 5&2&1 \end{bmatrix}.

Dengan menggunakan metode CHIO, maka didapat

det(A) = \dfrac{1}{(-2)^{3-2}} \begin{vmatrix} \begin{vmatrix} -2&1\\ 3&-5  \end{vmatrix} & \begin{vmatrix} -2&4\\ 3&2 \end{vmatrix}\\ &\\  \begin{vmatrix} -2&1\\ 5&2 \end{vmatrix} & \begin{vmatrix} -2&4\\  5&1 \end{vmatrix} \end{vmatrix}

= \dfrac{1}{-2} \begin{vmatrix} (-5)(-2)-(3)(1) & (-2)(2)-(3)(4)\\ (-2)(2)-(1)(5) & (-2)(1)-(4)(5) \end{vmatrix}

= \dfrac{1}{-2} \begin{vmatrix} 7&-16\\ -9&-22 \end{vmatrix}

= \dfrac{1}{-2} (7 \cdot -22-(-16) \cdot -9)

= \dfrac{1}{-2} (-154-144)

= \dfrac{1}{-2} (-298)

= -149

Contoh 2.

Hitung determinan matriks B = \begin{bmatrix} 2&1&6&7\\ 3&2&4&5\\ 4&4&2&3\\ 5&6&1&4 \end{bmatrix}.

Dengan menggunakan metode CHIO, maka didapat

det(B) = \dfrac{1}{(2)^{4-2}} \begin{vmatrix} \begin{vmatrix} 2&1\\ 3&2  \end{vmatrix} & \begin{vmatrix} 2&6\\ 3&4 \end{vmatrix} &  \begin{vmatrix} 2&7\\ 3&5 \end{vmatrix}\\ &&\\ \begin{vmatrix} 2&1\\  4&4 \end{vmatrix} & \begin{vmatrix} 2&6\\ 4&2 \end{vmatrix} &  \begin{vmatrix} 2&7\\ 4&3 \end{vmatrix}\\ &&\\ \begin{vmatrix} 2&1\\  5&6 \end{vmatrix} & \begin{vmatrix} 2&6\\ 5&1 \end{vmatrix} &  \begin{vmatrix} 2&7\\ 5&4 \end{vmatrix} \end{vmatrix}

= \dfrac{1}{2^2} \begin{vmatrix} (2)(2)-(3)(1) & (2)(4)-(3)(6) & (2)(5)-(3)(7)\\ (2)(4)-(1)(4) & (2)(2)-(4)(6) & (2)(3)-(7)(4)\\ (2)(6)-(1)(5) & (2)(1)-(6)(5) & (2)(4)-(7)(5) \end{vmatrix}

= \dfrac{1}{4} \begin{vmatrix} 1&-10&-11 \\ 4&-20&-22\\ 7&-28&-27  \end{vmatrix}

Misal C = \begin{vmatrix} 1&-10&-11 \\ 4&-20&-22\\ 7&-28&-27 \end{vmatrix}, diperoleh

det(C) = \dfrac{1}{1^{3-2}} \begin{vmatrix} \begin{vmatrix} 1&-10\\ 4&-20  \end{vmatrix} & \begin{vmatrix} 1&-11\\ 4&-22 \end{vmatrix}\\  &\\ \begin{vmatrix} 1&-10\\ 7&-28 \end{vmatrix} &  \begin{vmatrix} 1&-11\\ 7&-27 \end{vmatrix} \end{vmatrix}

= \dfrac{1}{1} \begin{vmatrix} (1)(-20)-(4)(-10) & (1)(-22)-(-11)(4)\\ (1)(-28)-(-10)(7)  & (1)(-27)-(-11)(7) \end{vmatrix}

= \begin{vmatrix} 20 & 22\\ 42 & 50 \end{vmatrix}

= (20 \cdot 50-22 \cdot 42

= 1000-924

= 76

Jadi,

det(B) = \dfrac{1}{4} det(C)

= \dfrac{1}{4} (76)

= 19

 

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s