Determinan Matriks dengan Metode CHIO


Determinan merupakan suatu fungsi dari himpunan semua matriks persegi ke himpunan semua bilangan real. Determinan matriks A biasanya dinyatakan oleh |A| atau det(A). Terdapat beberapa metode yang digunakan untuk menentukan determinan matriks yaitu metode Sarrus, Ekspansi Kofaktor, dan Kondensasi (Penyusutan) CHIO. Kondensasi CHIO merupakan salah satu metode yang dapat digunakan dalam menentukan determinan matriks yang memiliki ordo n \times n dengan n \geq 3.
Kondensasi CHIO menyusutkan determinan matriks ordo n \times n menjadi ordo (n-1) \times (n-1) dan dikalikan dengan elemen a_{11}. Proses kondensasi ini berakhir pada determinan matriks ordo 2 \times 2.
Tanpa mengurangi perumuman, dalam tulisan ini menggunakan matriks persegi dengan syarat elemen a_{11} \neq 0. Apabila nilai elemen a_{11} = 0 maka dilakukan proses operasi baris/kolom yaitu menukarkan baris/kolom pada determinan matriks untuk memperoleh a_{11} \neq 0.

Perhatikan untuk matrik dengan ordo 3 \times 3. Persamaan yang digunakan untuk metode CHIO ini sebagai berikut.

det(A) = \dfrac{1}{(a_{11})^{3-2}} \begin{vmatrix} \begin{vmatrix} a_{11} &  a_{12}\\ a_{21} & a_{22} \end{vmatrix} & \begin{vmatrix} a_{11} &  a_{13}\\ a_{21} & a_{23} \end{vmatrix}\\ &\\ \begin{vmatrix} a_{11}  & a_{12}\\ a_{31} & a_{32} \end{vmatrix} & \begin{vmatrix} a_{11}  & a_{13}\\ a_{31} & a_{33} \end{vmatrix} \end{vmatrix}

Selanjutnya untuk matrik dengan ordo 4 \times 4. Persamaan yang digunakan untuk metode CHIO ini sebagai berikut. Baca lebih lanjut