Kernel dan Image Homomorfisma Grup


Selanjutnya telah diketahui bahwa homomorfisma f dari G ke G_1 selalu memetakan e \in G ke e_1 \in G_1. Tetapi ada juga anggota lain di G yang dipetakan ke e_1. Sehingga apabila dihimpun anggota-anggota di G yang dipetakan ke e_1, akan membentuk definisi baru yang memiliki struktur. Berikut diberikan definisi

Definisi 1.

Diberikan f : G \to G_1 homomorfisma grup, maka kernel dari f, dinotasikan Ker(f), didefinisikan sebagai berikut.

Ker(f) = f^{-1}(e_1) = \{ a \in G| f(a)=e_1 \}

dengan e_1 identitas di G_1.

Contoh 2.

Diberikan homomorfisma grup f : \mathbb{Z} \to \mathbb{Z}_8 dengan definisi f(a) = a \mod 8. Tentukan kernel dari f.

Ker(f) = \{ a \in \mathbb{Z} | f(a)=[0] \}

= \{ a \in \mathbb{Z} | a \mod 8 = [0] \}

= \{ a \in \mathbb{Z} | a = 8n, n \in \mathbb{Z} \}

= \{ 8n | n \in \mathbb{Z} \}

= 8\mathbb{Z}. \square Baca lebih lanjut