Invers Kiri dan Kanan Matriks


Apabila berbicara tentang invers matriks, maka kita perlu pahami syarat cukup suatu matriks mempunyai invers, karena tidak semua matriks mempunya invers. Matriks seperti apa yang mempunyai invers? Yaitu matriks yang determinannya tidak sama dengan nol. Secara umum matriks A_{n \times n} merupakan invers dari matriks B_{n \times n} jika dan hanya jika AB = I_n = BA. Perhatikan matriks berikut ini,

Contoh 1.

A = \begin{pmatrix} 1&2\\ 1&3\\ 4&7 \end{pmatrix} dan B = \begin{pmatrix} 3&-2&0\\ -1&1&0 \end{pmatrix}.

AB = \begin{pmatrix} 1&2\\ 1&3\\ 4&7 \end{pmatrix} \begin{pmatrix} 3&-2&0\\ -1&1&0 \end{pmatrix}

= \begin{pmatrix} 1&0&0\\ 0&1&0\\ 5&-1&0 \end{pmatrix}.

BA = \begin{pmatrix} 3&-2&0\\ -1&1&0 \end{pmatrix} \begin{pmatrix} 1&2\\ 1&3\\ 4&7 \end{pmatrix}.

= \begin{pmatrix} 1&0\\ 0&1 \end{pmatrix} = I_2.

Jadi, B adalah invers kiri dari matriks A tapi B bukan invers kanan dari A. Baca lebih lanjut

Iklan

Problem (15) : Menyelesaikan Tiga Persamaan dengan OBE


Terpikir dalam kepala, apakah penjelasan yang saya paparkan dalam blog ini masih terlalu ribet ? Inin terpikir setelah salah satu pengunjung bertanya lewat email tentang mencari solusi persamaan. Melalui tulisan ini mencoba untuk menjabarkan langkah demi langkah untuk penyelesaian tiga persamaan sebagai berikut :

2x + 4y + 5z = 36

x + 3y +   z = 13

3x + 5y + 2z = 29 Baca lebih lanjut

Operasi Baris Elementer


Untuk menentukan solusi dari SPL dilakukan dengan cara membentuk matrik yang diperluas/diperbesar dari SPL dan melakukan Operasi Baris Elementer (OBE) pada matriks yang diperbesar tersebut. OBE ini didapatkan dalam suatu tahapan dengan menerapkan ketiga tipe operasi berikut untuk menghilangkan bilangan-bilangan tak diketahui secara sistematik. Baca lebih lanjut