Penyelesaian Persamaan Diferensial : PD Peubah Terpisah


Persamaan Diferensial (PD) orde satu merupakan bentuk PD yang paling sederhana, karena hanya melibatkan turunan pertama dari suatu fungsi yang tidak diketahui. Jika dalam persamaan tersebut variabel bebas dan variabel terikatnya berada pada sisi yang berbeda dari tanda persamaannya, maka disebut PD peubah terpisah dan untuk menentukan penyelesaiannya, tinggal diintegralkan. Jika tidak demikian, maka disebut PD peubah tak terpisah. Suatu PD orde satu yang peubahnya tak terpisah biasanya dapat dengan mudah dijadikan PD peubah terpisah melalui penggantian (substitusi) dari salah satu variabelnya.

Bentuk umum dengan peubah-peubah terpisah dapat ditulis sebagai berikut M(x) dx + N(y) dy = 0. Oleh karena itu, variabel-variabel telah terpisah dan penyelesaian PD diatas adalah dengan mengintegralkan suku demi suku yaitu \displaystyle \int M(x) ~dx + \int N(y) ~dy = C, dengan C adalah konstanta sebarang. Baca lebih lanjut