Persamaan Garis SInggung Elips Melalui suatu Tititk (1)


Seperti pada tulisan sebelumnya, Persamaan Garis Singgung Elips dengan Gradien Tertentu, pada kesempatan ini akan dibahas lagi Persamaan Garis Singgung Elips tapi melalui suatu titik. Titik yang dimaksud adalah bisa terletak pada Elips itu sendiri atau diluar elips. Yang pertama, perhatikan untuk titik yang melalui elips (untuk kasus titik yang terletak diluar elips, akan dibahas pada tulisan selanjutnya). Misal diberikan elips dengan pusat di (0,0), yaitu \dfrac{x^2}{p} + \dfrac{y^2}{q} =1 dan titik (x_1, y_1) yang melalui elips. Sehingga diperoleh persamaan garis yang melalui titik tersebut adalah y-y_1 = m(x-x_1). Selanjutnya, disubtitusi persamaan garis tersebut ke dalam persaaan elips, diperoleh,

\dfrac{x^2}{p} + \dfrac{(y_1 + m(x-x_1))^2}{q} = 1

\dfrac{q x^2 + p(y_1 + m(x-x_1))^2}{pq} = 1

qx^2 + p(y_1 + m(x-x_1))^2) = pq

qx^2 + p(y_1^2 + 2 y_1 m(x-x_1) + m^2(x-x_1)^2) = pq

qx^2 + p(y_1^2 + 2 y_1 mx -2y_1x_1 + m^2(x^2 -2x_1x + x_1^2)) = pq

qx^2 + py_1^2 + 2 p y_1 mx -2py_1x_1 + pm^2x^2 -2pm^2x_1x + pm^2x_1^2 = pq

(pm^2+q)x^2 + (2py_1m -2pm^2x_1)x + (py_1^2 -2py_1x_1 + pm^2x_1^2) = pq

(pm^2+q)x^2 + (2py_1m -2pm^2x_1)x + (py_1^2 -2py_1x_1 + pm^2x_1^2 -pq) = 0

Syarat menyinggung D = 0, atau dengan kata lain persamaan kuadrat di atas memeiliki dua akar kembar, yaitu x_1 = x_2. Baca lebih lanjut

Iklan

Menggambar Elips


Menurut  Wikipedia, Elips adalah gambar yang menyerupai lingkaran yang telah dipanjangkan ke satu arah. Lebih lanjut, Elips merupakan salah satu contoh dari irisan kerucut dan dapat didefinisikan sebagai lokus dari semua titik, dalam satu bidang, yang memiliki jumlah jarak yang sama dari dua titik tetap yang telah ditentukan sebelumnya (disebut fokus).

Sebelum lebih jauh, sudah diketahui bahwa bentuk standar/baku lingkaran dengan jari-jari r dan berpusat di (a,b) adalah

(x-a)^2+(y-b)^2 = r^2

Jika kedua ruas dibagi oleh r^2, diperoleh

\dfrac{(x-a)^2}{r^2} + \dfrac{(y-b)^2}{r^2} = 1

Pada persamaan terakhir di atas, masing penyebut r^2 pada pecahan tersebut merupakan jarak vertical dan horizontal yang melalui titik pusat lingkaran tersebut. Bagaimana jika penyebut pada pecahan di atas tersebut berbeda ? Persamaan ini yang akan menjadi persamaan umum dari Elips. Perhatikan ilustrasi berikut. Misal dipunyai persamaan sebagai berikut.

\dfrac{(x-3)^2}{4^2} + \dfrac{(y-1)^2}{2^2} = 1 Baca lebih lanjut