Persamaan Garis Singgung Lingkaran (2)


Tulisan ini merupakan kelanjutan dari Persamaan Garis Singgung Lingkaran (1) yaitu mencari persamaan garis  singgung lingkaran yang melalui suatu titik singgung. Tulisan kali ini merupakan bagaimana mencari persamaan garis singgung jika diketahui gradien garis singgung. Dalam hal ini memiliki dua kondisi seperti sebelumnya yaitu untuk lingkaran yang berpusat titik O(0,0) dan jari-jari r dan untuk lingkaran dengan titik pusat A(a,b) dengan jari-jari r. Baik, pada tulisan ini saya akan paparkan satu per satu.

1.   Lingkaran dengan Pusat di O(0,0) dan jari-jari r

Persamaan garis singgung lingkaran L \equiv x^2+y^2=r^2 apabila gradien garis singgung m diketahui. Sehingga diperoleh persamaan garis yaitu y = mx + n. Selanjutnya substitusi persamaan garis singgung ke persamaan lingkaran, diperoleh

x^2+(mx+n)^2=r^2

x^2 + m^2x^2 + 2mnx + n^2 = r^2

(1+m^2)x^2 + 2mnx + (n^2-r^2) = 0 Baca lebih lanjut

Persamaan Garis Singgung Lingkaran (1)


Pada tulisan sebelumnya sudah dijelaskan tentang Persamaan Lingkaran. Pada tulisan ini akan dipaparkan tentang Persamaan Garis Singgung Lingkaran yaitu persamaan garis yang melalui suatu titik. Persamaan garis singgung yang seperti ini memiliki dua kondisi yaitu untuk lingkaran yang berpusat titik O(0,0) dan jari-jari r dan untuk lingkaran dengan titik pusat A(a,b) dengan jari-jari r. Baik, pada tulisan ini saya akan paparkan satu per satu.

1.   Lingkaran dengan Pusat di O(0,0) dan jari-jari r

Perhatikan gambar di bawah ini.

PGSL_01

Pada gambar di atas, garis g adalah garis singgung lingkaran L \equiv x^2+y^2=r^2 dan P(x_1,y_1) adalah titik singgungnya. Hal ini berarti titik P(x_1,y_1) terletak pada lingkaran L \equiv x^2+y^2=r^2 sehingga berakibat x_1^2 + y_1^2 = r^2. Baca lebih lanjut