Soal dan Pembahasan SBMPTN, UM UNDIP, UM (UTUL) UGM, SIPENMARU POLTEKKES


Assalamualaikum.

Halo semua, setelah sekian lama menggeluti dunia blog. Saya pribadi sebagai penulis sekaligus sebagai owner dari blog Math Is Beautiful membuat sebuah tulisan sederhana berupa buku Pembahasan UJIAN NASIONAL (IPA), SBPMTN, UJIAN MASUK (UM) UNIVERSITAS DIPONEGORO (UNDIP), UJIAN TULIS (UTUL) UGM, DAN SIPENMARU POLTEKKES khususnya soal yang berkaitan dengan matematika. Buku ini murni tulisan saya pribadi yang saya sadur dari berbagai sumber. Tujuan dari penulisan buku ini adalah untuk mempermudah teman-teman belajar dalam memepersiapkan diri untuk Ujian Nasional sekaligus persiapan menuju universitas idaman. Dalam hal ini, yang saya dapat bukukan, antara lain:

UJIAN NASIONAL SMA (IPA)

  1. UN MATEMATIKA IPA Tahun Pelajaran 2010/2011
  2. UN MATEMATIKA IPA Tahun Pelajaran 2011/2012
  3. UN MATEMATIKA IPA Tahun Pelajaran 2012/2013
  4. UN MATEMATIKA IPA Tahun Pelajaran 2013/2014
  5. UN MATEMATIKA IPA Tahun Pelajaran 2014/2015
  6. UN MATEMATIKA IPA Tahun Pelajaran 2015/2016
  7. UN MATEMATIKA IPA Tahun Pelajaran 2016/2017
  8. UN MATEMATIKA IPA Tahun Pelajaran 2017/2018
  9. UN MATEMATIKA IPA Tahun Pelajaran 2018/2019

SNMPTN dan SBMPTN Baca lebih lanjut

Pembahasan TKPA Matematika Dasar SBMPTN 2017 (Kode Soal 226) (2)


  1. Jika f(x) = 1-x^2 dan g(x) = \sqrt{5-x}, maka daerah hasil fungsi komposisi f \circ g adalah …

    A. \{ y~|~ -\infty < y < \infty\}

    B. \{ y~|~ y \leq -1 \text{ atau } y \geq 1\}

    C. \{ y~|~ y \leq 5\}

    D. \{ y~|~ y \leq 1\}

    E. \{ y~|~ -1 \leq y \leq 1\}

    PEMBAHASAN.

    Perhatikan,

    \begin{array}{rl} (f \circ g(x) &= f(g(x))\\ &= f(\sqrt{5-x})\\ &= 1-(\sqrt{5-x})^2\\ &=1-(5-x)\\ &= x-4.\end{array}

    Karena fungsi f \circ g adalah bukan fungsi akar atau rasional (pecahan), maka daerah hasilnya adalah semua bilangan real. Jadi, jawaban yang tepat adalah pilihan A.

    JAWABAN : A Baca lebih lanjut

Pembahasan TKPA Matematika Dasar SBMPTN 2017 (Kode Soal 226) (1)


  1. Misalkan A^T adalah tranpose matriks A. Jika A = \begin{pmatrix} 2&x\\ 0&-2 \end{pmatrix} sehingga A^T A = \begin{pmatrix} 4&4\\ 4&8 \end{pmatrix}, maka nilai x^2-x adalah …

    A. 0

    B. 2

    C. 6

    D. 12

    E. 20

    PEMBAHASAN.

    Perhatikan,

    \begin{array}{rl} A^T A &= \begin{pmatrix} 4&4\\ 4&8 \end{pmatrix}\\ \begin{pmatrix} 2&0\\ x&-2 \end{pmatrix} \begin{pmatrix} 2&x\\ 0&-2 \end{pmatrix} &= \begin{pmatrix} 4&4\\ 4&8 \end{pmatrix}\\ \begin{pmatrix} 4&2x\\ 2x&x^2+4 \end{pmatrix} &= \begin{pmatrix} 4&4\\ 4&8 \end{pmatrix} \end{array}

    Dari persamaan terakhir matriks di atas, diperoleh 2x=4, yang berkibat x=2. Oleh karena, didapat

    x^2-x = 2^2-2 = 4-2 = 2.

    Jadi, x^2-x=2.

    JAWABAN : B Baca lebih lanjut

Pembahasan TKPA Matematika Dasar SBMPTN 2016 (Kode Soal 321) (2)


  1. Jika \begin{pmatrix} 1&1\\ 2&1 \end{pmatrix} P \begin{pmatrix} 0\\ 1 \end{pmatrix} = \begin{pmatrix} 1\\ 2 \end{pmatrix} dan \begin{pmatrix} 1&1\\ 2&1 \end{pmatrix} P \begin{pmatrix} 1\\ 1 \end{pmatrix} = \begin{pmatrix} 2\\ 1 \end{pmatrix}, maka \det(P) = \ldots

    A. -3

    B. -2

    C. 1

    D. 2

    E. 3

    PEMBAHASAN.

    Misal P = \begin{pmatrix} a&b\\ c&d \end{pmatrix} dan A = \begin{pmatrix} 1&1\\ 2&1 \end{pmatrix}, didapat

    A^{-1} = \dfrac{1}{1 \cdot 1-2 \cdot 1} \begin{pmatrix} 1&-1\\ -2&1 \end{pmatrix} = \dfrac{1}{-1} \begin{pmatrix} 1&-1\\ -2&1 \end{pmatrix} = \begin{pmatrix} -1&1\\ 2&-1 \end{pmatrix}

    Perhatikan,

    \begin{array}{rl} \begin{pmatrix} 1&1\\ 2&1 \end{pmatrix} P \begin{pmatrix} 0\\ 1 \end{pmatrix} &= \begin{pmatrix} 1\\ 2 \end{pmatrix}\\ A \begin{pmatrix} a&b\\ c&d \end{pmatrix} \begin{pmatrix} 0\\ 1 \end{pmatrix} &= \begin{pmatrix} 1\\ 2 \end{pmatrix}\\ \begin{pmatrix} a&b\\ c&d \end{pmatrix} \begin{pmatrix} 0\\ 1 \end{pmatrix} &= A^{-1} \begin{pmatrix} 1\\ 2 \end{pmatrix}\\ \begin{pmatrix} a&b\\ c&d \end{pmatrix} \begin{pmatrix} 0\\ 1 \end{pmatrix} &= \begin{pmatrix} -1&1\\ 2&-1 \end{pmatrix} \begin{pmatrix} 1\\ 2 \end{pmatrix}\\ \begin{pmatrix} b\\ d \end{pmatrix} &= \begin{pmatrix} 1\\ 0 \end{pmatrix} \end{array}

    Jadi diperoleh b=1 dan d=0. Dengan cara yang sama didapat,

    \begin{array}{rl} \begin{pmatrix} a&b\\ c&d \end{pmatrix} \begin{pmatrix} 1\\ 1 \end{pmatrix} &= A^{-1} \begin{pmatrix} 2\\ 1 \end{pmatrix}\\ \begin{pmatrix} a+b\\ c+d \end{pmatrix} &= \begin{pmatrix} -1&1\\ 2&-1 \end{pmatrix} \begin{pmatrix} 1\\ 2 \end{pmatrix}\\ \begin{pmatrix} a+b\\ c+d \end{pmatrix} &= \begin{pmatrix} -1\\ 3 \end{pmatrix}\\ \end{array}

    Dari persamaan matriks tersebut, didapat a+b=-1 dan c+d=3. Selanjutnya dengan mensubstitusikan b=1 dan d=0, diperoleh a=-2 dan c=3. Kemudian didapat matriks P = \begin{pmatrix} -2&1\\ 3&0 \end{pmatrix}. Dengan demikian diperoleh

    \det(P) = -2 \cdot 0 -3\cdot 1 = -3.

    JAWABAN : A Baca lebih lanjut

Pembahasan TKPA Matematika Dasar SBMPTN 2016 (Kode Soal 321) (1)


  1. Misalkan m dan n adalah bilangan bulat dan merupakan akar-akar persamaan x^2+ax-30=0, maka nilai a agar m+n maksimum adalah …

    A. 30

    B. 29

    C. 13

    D. -29

    E. -31

    PEMBAHASAN.

    Karena m dan n adalah bilangan bulat dan merupakan akar-akar persamaan x^2+ax-30=0, berakibat m+n = \dfrac{-b}{a}. Perhatikan,

    m+n = \dfrac{-b}{a} = \dfrac{-a}{1} = -a.

    Selanjutnya misal diberikan persamaan kuadrat ax^2+bx+c=0 dengan p dan q akar-akar persamaan kuadrat tersebut, maka c=p \cdot q dan b=p+q. Dengan kata lain p dan q adalah faktor dari c yang memenuhi b=p+q. Sehingga untuk persamaan kuadrat x^2+ax-30=0 memiliki beberapa kemungkinan faktor dari c=-30, sehingga terdapat beberapa kemungkinan nilai a. Perhatikan,Dari m+n=-a dan nilai a yang diperoleh pada tabel, sehingga agar m+n maksimum, haruslah a-nya bernilai negatif. Dengan kata lain a=-29.

    JAWABAN : D Baca lebih lanjut

Pembahasan TKPA SBMPTN 2016 (Kode Soal 321)


  1. Jika k adalah bilangan bulat positif genap yang habis dibagi 3, 4, dan 8, maka 2k-8 adalah …

    A. >186

    B. \geq 88

    C. >88

    D. >40

    E. \geq 40

    PEMBAHASAN.

    Karena k adalah bilangan bulat positif genap yang habis dibagi 3, 4, dan 8, maka k adalah minimal habis dibagi oleh KPK(3,4,8), yaitu 24. Oleh karena itu, k adalah bilangan bulat positif genap yang habis dibagi oleh 24. Jadi, k \geq 24. Perhatikan,

    2k-8 \geq 2 \cdot 24 -8 = 48-8 = 40.

    Jadi, 2k-8 \geq 40.

    JAWABAN : E Baca lebih lanjut