Pembahasan TKPA Matematika Dasar SBMPTN 2017 (Kode Soal 226) (2)


  1. Jika f(x) = 1-x^2 dan g(x) = \sqrt{5-x}, maka daerah hasil fungsi komposisi f \circ g adalah …

    A. \{ y~|~ -\infty < y < \infty\}

    B. \{ y~|~ y \leq -1 \text{ atau } y \geq 1\}

    C. \{ y~|~ y \leq 5\}

    D. \{ y~|~ y \leq 1\}

    E. \{ y~|~ -1 \leq y \leq 1\}

    PEMBAHASAN.

    Perhatikan,

    \begin{array}{rl} (f \circ g(x) &= f(g(x))\\ &= f(\sqrt{5-x})\\ &= 1-(\sqrt{5-x})^2\\ &=1-(5-x)\\ &= x-4.\end{array}

    Karena fungsi f \circ g adalah bukan fungsi akar atau rasional (pecahan), maka daerah hasilnya adalah semua bilangan real. Jadi, jawaban yang tepat adalah pilihan A.

    JAWABAN : A Baca lebih lanjut

Iklan

Pembahasan TKPA Matematika Dasar SBMPTN 2017 (Kode Soal 226) (1)


  1. Misalkan A^T adalah tranpose matriks A. Jika A = \begin{pmatrix} 2&x\\ 0&-2 \end{pmatrix} sehingga A^T A = \begin{pmatrix} 4&4\\ 4&8 \end{pmatrix}, maka nilai x^2-x adalah …

    A. 0

    B. 2

    C. 6

    D. 12

    E. 20

    PEMBAHASAN.

    Perhatikan,

    \begin{array}{rl} A^T A &= \begin{pmatrix} 4&4\\ 4&8 \end{pmatrix}\\ \begin{pmatrix} 2&0\\ x&-2 \end{pmatrix} \begin{pmatrix} 2&x\\ 0&-2 \end{pmatrix} &= \begin{pmatrix} 4&4\\ 4&8 \end{pmatrix}\\ \begin{pmatrix} 4&2x\\ 2x&x^2+4 \end{pmatrix} &= \begin{pmatrix} 4&4\\ 4&8 \end{pmatrix} \end{array}

    Dari persamaan terakhir matriks di atas, diperoleh 2x=4, yang berkibat x=2. Oleh karena, didapat

    x^2-x = 2^2-2 = 4-2 = 2.

    Jadi, x^2-x=2.

    JAWABAN : B Baca lebih lanjut

Pembahasan TKPA Matematika Dasar SBMPTN 2016 (Kode Soal 321) (2)


  1. Jika \begin{pmatrix} 1&1\\ 2&1 \end{pmatrix} P \begin{pmatrix} 0\\ 1 \end{pmatrix} = \begin{pmatrix} 1\\ 2 \end{pmatrix} dan \begin{pmatrix} 1&1\\ 2&1 \end{pmatrix} P \begin{pmatrix} 1\\ 1 \end{pmatrix} = \begin{pmatrix} 2\\ 1 \end{pmatrix}, maka \det(P) = \ldots

    A. -3

    B. -2

    C. 1

    D. 2

    E. 3

    PEMBAHASAN.

    Misal P = \begin{pmatrix} a&b\\ c&d \end{pmatrix} dan A = \begin{pmatrix} 1&1\\ 2&1 \end{pmatrix}, didapat

    A^{-1} = \dfrac{1}{1 \cdot 1-2 \cdot 1} \begin{pmatrix} 1&-1\\ -2&1 \end{pmatrix} = \dfrac{1}{-1} \begin{pmatrix} 1&-1\\ -2&1 \end{pmatrix} = \begin{pmatrix} -1&1\\ 2&-1 \end{pmatrix}

    Perhatikan,

    \begin{array}{rl} \begin{pmatrix} 1&1\\ 2&1 \end{pmatrix} P \begin{pmatrix} 0\\ 1 \end{pmatrix} &= \begin{pmatrix} 1\\ 2 \end{pmatrix}\\ A \begin{pmatrix} a&b\\ c&d \end{pmatrix} \begin{pmatrix} 0\\ 1 \end{pmatrix} &= \begin{pmatrix} 1\\ 2 \end{pmatrix}\\ \begin{pmatrix} a&b\\ c&d \end{pmatrix} \begin{pmatrix} 0\\ 1 \end{pmatrix} &= A^{-1} \begin{pmatrix} 1\\ 2 \end{pmatrix}\\ \begin{pmatrix} a&b\\ c&d \end{pmatrix} \begin{pmatrix} 0\\ 1 \end{pmatrix} &= \begin{pmatrix} -1&1\\ 2&-1 \end{pmatrix} \begin{pmatrix} 1\\ 2 \end{pmatrix}\\ \begin{pmatrix} b\\ d \end{pmatrix} &= \begin{pmatrix} 1\\ 0 \end{pmatrix} \end{array}

    Jadi diperoleh b=1 dan d=0. Dengan cara yang sama didapat,

    \begin{array}{rl} \begin{pmatrix} a&b\\ c&d \end{pmatrix} \begin{pmatrix} 1\\ 1 \end{pmatrix} &= A^{-1} \begin{pmatrix} 2\\ 1 \end{pmatrix}\\ \begin{pmatrix} a+b\\ c+d \end{pmatrix} &= \begin{pmatrix} -1&1\\ 2&-1 \end{pmatrix} \begin{pmatrix} 1\\ 2 \end{pmatrix}\\ \begin{pmatrix} a+b\\ c+d \end{pmatrix} &= \begin{pmatrix} -1\\ 3 \end{pmatrix}\\ \end{array}

    Dari persamaan matriks tersebut, didapat a+b=-1 dan c+d=3. Selanjutnya dengan mensubstitusikan b=1 dan d=0, diperoleh a=-2 dan c=3. Kemudian didapat matriks P = \begin{pmatrix} -2&1\\ 3&0 \end{pmatrix}. Dengan demikian diperoleh

    \det(P) = -2 \cdot 0 -3\cdot 1 = -3.

    JAWABAN : A Baca lebih lanjut

Pembahasan TKPA Matematika Dasar SBMPTN 2016 (Kode Soal 321) (1)


  1. Misalkan m dan n adalah bilangan bulat dan merupakan akar-akar persamaan x^2+ax-30=0, maka nilai a agar m+n maksimum adalah …

    A. 30

    B. 29

    C. 13

    D. -29

    E. -31

    PEMBAHASAN.

    Karena m dan n adalah bilangan bulat dan merupakan akar-akar persamaan x^2+ax-30=0, berakibat m+n = \dfrac{-b}{a}. Perhatikan,

    m+n = \dfrac{-b}{a} = \dfrac{-a}{1} = -a.

    Selanjutnya misal diberikan persamaan kuadrat ax^2+bx+c=0 dengan p dan q akar-akar persamaan kuadrat tersebut, maka c=p \cdot q dan b=p+q. Dengan kata lain p dan q adalah faktor dari c yang memenuhi b=p+q. Sehingga untuk persamaan kuadrat x^2+ax-30=0 memiliki beberapa kemungkinan faktor dari c=-30, sehingga terdapat beberapa kemungkinan nilai a. Perhatikan,Dari m+n=-a dan nilai a yang diperoleh pada tabel, sehingga agar m+n maksimum, haruslah a-nya bernilai negatif. Dengan kata lain a=-29.

    JAWABAN : D Baca lebih lanjut

Pembahasan TKPA SBMPTN 2016 (Kode Soal 321)


  1. Jika k adalah bilangan bulat positif genap yang habis dibagi 3, 4, dan 8, maka 2k-8 adalah …

    A. >186

    B. \geq 88

    C. >88

    D. >40

    E. \geq 40

    PEMBAHASAN.

    Karena k adalah bilangan bulat positif genap yang habis dibagi 3, 4, dan 8, maka k adalah minimal habis dibagi oleh KPK(3,4,8), yaitu 24. Oleh karena itu, k adalah bilangan bulat positif genap yang habis dibagi oleh 24. Jadi, k \geq 24. Perhatikan,

    2k-8 \geq 2 \cdot 24 -8 = 48-8 = 40.

    Jadi, 2k-8 \geq 40.

    JAWABAN : E Baca lebih lanjut