Soal dan Pembahasan SBMPTN, UM UNDIP, UM (UTUL) UGM, SIPENMARU POLTEKKES


Assalamualaikum.

Halo semua, setelah sekian lama menggeluti dunia blog. Saya pribadi sebagai penulis sekaligus sebagai owner dari blog Math Is Beautiful membuat sebuah tulisan sederhana berupa buku Pembahasan UJIAN NASIONAL (IPA), SBPMTN, UJIAN MASUK (UM) UNIVERSITAS DIPONEGORO (UNDIP), UJIAN TULIS (UTUL) UGM, DAN SIPENMARU POLTEKKES khususnya soal yang berkaitan dengan matematika. Buku ini murni tulisan saya pribadi yang saya sadur dari berbagai sumber. Tujuan dari penulisan buku ini adalah untuk mempermudah teman-teman belajar dalam memepersiapkan diri untuk Ujian Nasional sekaligus persiapan menuju universitas idaman. Dalam hal ini, yang saya dapat bukukan, antara lain:

UJIAN NASIONAL SMA (IPA)

  1. UN MATEMATIKA IPA Tahun Pelajaran 2010/2011
  2. UN MATEMATIKA IPA Tahun Pelajaran 2011/2012
  3. UN MATEMATIKA IPA Tahun Pelajaran 2012/2013
  4. UN MATEMATIKA IPA Tahun Pelajaran 2013/2014
  5. UN MATEMATIKA IPA Tahun Pelajaran 2014/2015
  6. UN MATEMATIKA IPA Tahun Pelajaran 2015/2016
  7. UN MATEMATIKA IPA Tahun Pelajaran 2016/2017
  8. UN MATEMATIKA IPA Tahun Pelajaran 2017/2018
  9. UN MATEMATIKA IPA Tahun Pelajaran 2018/2019

SNMPTN dan SBMPTN Baca lebih lanjut

Pembahasan TKPA Matematika Dasar SBMPTN 2017 (Kode Soal 226) (2)


  1. Jika f(x) = 1-x^2 dan g(x) = \sqrt{5-x}, maka daerah hasil fungsi komposisi f \circ g adalah …

    A. \{ y~|~ -\infty < y < \infty\}

    B. \{ y~|~ y \leq -1 \text{ atau } y \geq 1\}

    C. \{ y~|~ y \leq 5\}

    D. \{ y~|~ y \leq 1\}

    E. \{ y~|~ -1 \leq y \leq 1\}

    PEMBAHASAN.

    Perhatikan,

    \begin{array}{rl} (f \circ g(x) &= f(g(x))\\ &= f(\sqrt{5-x})\\ &= 1-(\sqrt{5-x})^2\\ &=1-(5-x)\\ &= x-4.\end{array}

    Karena fungsi f \circ g adalah bukan fungsi akar atau rasional (pecahan), maka daerah hasilnya adalah semua bilangan real. Jadi, jawaban yang tepat adalah pilihan A.

    JAWABAN : A Baca lebih lanjut

Pembahasan TKPA Matematika Dasar SBMPTN 2016 (Kode Soal 321) (2)


  1. Jika \begin{pmatrix} 1&1\\ 2&1 \end{pmatrix} P \begin{pmatrix} 0\\ 1 \end{pmatrix} = \begin{pmatrix} 1\\ 2 \end{pmatrix} dan \begin{pmatrix} 1&1\\ 2&1 \end{pmatrix} P \begin{pmatrix} 1\\ 1 \end{pmatrix} = \begin{pmatrix} 2\\ 1 \end{pmatrix}, maka \det(P) = \ldots

    A. -3

    B. -2

    C. 1

    D. 2

    E. 3

    PEMBAHASAN.

    Misal P = \begin{pmatrix} a&b\\ c&d \end{pmatrix} dan A = \begin{pmatrix} 1&1\\ 2&1 \end{pmatrix}, didapat

    A^{-1} = \dfrac{1}{1 \cdot 1-2 \cdot 1} \begin{pmatrix} 1&-1\\ -2&1 \end{pmatrix} = \dfrac{1}{-1} \begin{pmatrix} 1&-1\\ -2&1 \end{pmatrix} = \begin{pmatrix} -1&1\\ 2&-1 \end{pmatrix}

    Perhatikan,

    \begin{array}{rl} \begin{pmatrix} 1&1\\ 2&1 \end{pmatrix} P \begin{pmatrix} 0\\ 1 \end{pmatrix} &= \begin{pmatrix} 1\\ 2 \end{pmatrix}\\ A \begin{pmatrix} a&b\\ c&d \end{pmatrix} \begin{pmatrix} 0\\ 1 \end{pmatrix} &= \begin{pmatrix} 1\\ 2 \end{pmatrix}\\ \begin{pmatrix} a&b\\ c&d \end{pmatrix} \begin{pmatrix} 0\\ 1 \end{pmatrix} &= A^{-1} \begin{pmatrix} 1\\ 2 \end{pmatrix}\\ \begin{pmatrix} a&b\\ c&d \end{pmatrix} \begin{pmatrix} 0\\ 1 \end{pmatrix} &= \begin{pmatrix} -1&1\\ 2&-1 \end{pmatrix} \begin{pmatrix} 1\\ 2 \end{pmatrix}\\ \begin{pmatrix} b\\ d \end{pmatrix} &= \begin{pmatrix} 1\\ 0 \end{pmatrix} \end{array}

    Jadi diperoleh b=1 dan d=0. Dengan cara yang sama didapat,

    \begin{array}{rl} \begin{pmatrix} a&b\\ c&d \end{pmatrix} \begin{pmatrix} 1\\ 1 \end{pmatrix} &= A^{-1} \begin{pmatrix} 2\\ 1 \end{pmatrix}\\ \begin{pmatrix} a+b\\ c+d \end{pmatrix} &= \begin{pmatrix} -1&1\\ 2&-1 \end{pmatrix} \begin{pmatrix} 1\\ 2 \end{pmatrix}\\ \begin{pmatrix} a+b\\ c+d \end{pmatrix} &= \begin{pmatrix} -1\\ 3 \end{pmatrix}\\ \end{array}

    Dari persamaan matriks tersebut, didapat a+b=-1 dan c+d=3. Selanjutnya dengan mensubstitusikan b=1 dan d=0, diperoleh a=-2 dan c=3. Kemudian didapat matriks P = \begin{pmatrix} -2&1\\ 3&0 \end{pmatrix}. Dengan demikian diperoleh

    \det(P) = -2 \cdot 0 -3\cdot 1 = -3.

    JAWABAN : A Baca lebih lanjut

Pembahasan TKPA SBMPTN 2014 (Kode Soal 683) (1)


  1. Semua nilai p yang memenuhi pertidaksamaan \dfrac{p}{p-2} < \dfrac{p-1}{p+2} adalah …

    A. p>2 atau p<-2

    B. -2<p<\dfrac{2}{5} dan p \neq 0

    C. p<-2 atau \dfrac{2}{5}<p<2

    D. \dfrac{2}{5}<p<2 atau p \neq 0

    E. -2<p<-\dfrac{2}{5} atau p>2

    PEMBAHASAN.

    Perhatikan,

    \begin{array}{rl} \dfrac{p}{p-2} &< \dfrac{p-1}{p+2}\\ \dfrac{p}{p-2}-\dfrac{p-1}{p+2} &<0\\ \dfrac{p(p+2)-(p-1)(p-2)}{(p-2)(p+2)} &<0\\ \dfrac{p^2+2p-(p^2-3p+2)}{(p-2)(p+2)} &<0\\ \dfrac{p^2+2p-p^2+3p-2}{(p-2)(p+2)} &<0\\ \dfrac{5p-2}{(p-2)(p+2)} &<0 \end{array}

    Pembilang :

    5p-2<0 \Leftrightarrow p<\dfrac{2}{5}

    Penyebut :

    (p-2)(p+2)<0 \Leftrightarrow p=2 \text{ atau } p=-2

    Dengan menggunakan garis bilangan, diperoleh $latex -2

    Selanjutnya dengan menggabungkan kedua garis bilangan, didapat.

    Jadi, dapat disimpulkan bahwa $latex -2

    JAWABAN : B Baca lebih lanjut

Kumpulan Soal UMPTN / SPMB / SNMPTN


Assalamulaikum,

Pasti sudah tidak asing lagi dengan nama UMPTN atau SPMB atau SNMPTN, khususnya untuk teman-teman kelas 3 SMA atau sederajat. Pada kesempatan ini saya mencoba untuk men-share soal-soal UMPTN / SPMB / SNMPTN matematika yang saya dapat dari berbagai sumber. Semoga soal-soal ini bermanfaat untuk kita semua.

UMPTN Matematika Dasar 1995 (Rayon A) [DOWNLOAD]

UMPTN Matematika Dasar 1996 (Rayon A) [DOWNLOAD]

UMPTN Matematika Dasar 1997 (Rayon A) [DOWNLOAD]

UMPTN Matematika Dasar 1998 (Rayon A) [DOWNLOAD]

UMPTN Matematika Dasar 1999 (Rayon A) [DOWNLOAD]

UMPTN Matematika Dasar 2000 (Rayon A) [DOWNLOAD]

UMPTN Matematika Dasar 2001 (Rayon A) [DOWNLOAD] Baca lebih lanjut