Matriks Invers Tergeneralisasi


Untuk mencari invers tergeneralisasi dari suatu matriks, disini akan menggunakan bantuan sebuah teorema, yaitu :

Teorema 1.

Misalkan A adalah matriks berukuran m \times n dan PAQ = \begin{bmatrix} B&0\\ 0&0 \end{bmatrix}, B adalah matriks nonsingular berukuran r \times r. Jika X adalah matriks berukuran n \times m yang didefinisikan sebagai X = Q\begin{bmatrix} Z&U\\ V&W \end{bmatrix}P dengan U,V,W dan Z adalah matriks sebarang, maka X adalah matriks invers tergeneralisasi jika dan hanya jika Z=B^{-1}.

Contoh 2.

Diketahui matriks A = \begin{bmatrix} 1 & 0 & 1 & 1\\ 0 & 1 & -1 & 0\\ 1 & 1 & 0 & 1\\\end{bmatrix}. Carilah matriks invers tergeneralisasi atau A^g.

  1. Pertama dibuat matriks augmentasinya dengan matriks I_3. Setelah itu, akan dilakukan OBE untuk mencari matriks P. Dalam hal ini, matriks P adalah matriks hasil OBE sampai menghasilkan eselon baris.

    \begin{bmatrix} 1 & 0 & 1 & 1 &| & 1 & 0 & 0\\ 0 & 1 & -1 & 0 &| & 0 & 1 & 0\\ 1 & 1 & 0 & 1 &| & 0 & 0 & 1\\ \end{bmatrix} \begin{array}{c} \\ \\ B_3-B_1\\ \end{array}

    \begin{bmatrix} 1 & 0 & 1 & 1 &| & 1 & 0 & 0\\ 0 & 1 & -1 & 0 &| & 0 & 1 & 0\\ 0 & 1 & -1 & 0 &| & -1 & 0 & 1\\ \end{bmatrix} \begin{array}{c} \\ \\ B_3-B_2\\ \end{array}

    Diperoleh matriks P = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ -1 & -1 & 1\\ \end{bmatrix}

    Setelah itu, matriks hasil OBE di atas ditranpose dan dibuat matriks augmentasi dengan matirks I_4. Kemudian dilakukan OBE lagi sampai menghasilakn matriks eselon baris tereduksi, matriks inilah yang merupakan matriks Q.

    \begin{bmatrix} 1 & 0 & 1 & 1 &| & 1 & 0 & 0\\ 0 & 1 & -1 & 0 &| & 0 & 1 & 0\\ 0 & 0 & 0 & 0 &| & -1 & -1 & 1\\ \end{bmatrix} \begin{array}{c} \\ \mbox{transpose}\\ \\ \end{array}

    \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 & 0\\ 0 & 1 & 0 & | & 0 & 1 & 0 & 0\\ 1 & -1 & 0 &| & 0 & 0 & 1 & 0\\ 1 & 0 & 0 & | & 0 & 0 & 0 & 1\\ \end{bmatrix} \begin{array}{c} \\ \\ B_3-B_1\\ B_4-B_1\\ \end{array}

    \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 & 0\\ 0 & 1 & 0 & | & 0 & 1 & 0 & 0\\ 0 & -1 & 0 &| & -1 & 0 & 1 & 0\\ 0 & 0 & 0 & | & -1 & 0 & 0 & 1\\ \end{bmatrix} \begin{array}{c} \\ \\ B_3+B_2\\ \\ \end{array}

    \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 & 0\\ 0 & 1 & 0 & | & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & | & -1 & 1 & 1 & 0\\ 0 & 0 & 0 & | & -1 & 0 & 0 & 1\\ \end{bmatrix}

    Diperoleh matriks Q = \begin{bmatrix} 1 & 0 & -1 & -1\\ 0 & 1 & 1 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}. Jadi, matriks P = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ -1 & -1 & 1\\ \end{bmatrix} dan Q = \begin{bmatrix} 1 & 0 & -1 & -1\\ 0 & 1 & 1 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}.

    Baca lebih lanjut