Pembahasan Soal Persamaan dan Fungsi Kuadrat UN SMA


  1. Persamaan kuadrat x2 – 5x + 6 = 0 mempunyai akar – akar x1 dan x2. Persamaan kuadrat yang akar – akarnya x1 – 3 dan x2 – 3 adalah …

    A. x2 – 2x = 0

    B. x2 – 2x + 30 = 0

    C. x2 + x = 0

    D. x2 + x – 30 = 0

    E. x2 + x + 30 = 0

    PEMBAHASAN :

    akar – akarnya :

    x1 – 3 = y \Rightarrow x1 = y + 3

    x2 – 3 = y \Rightarrow x2 = y + 3

    substitusi nilai “x1” atau “x2” kepersamaan kuadrat dalam soal, sehingga menjadi :

         x2 – 5x + 6 = 0

    PK Baru : (y + 3)2 – 5(y + 3) + 6 = 0

               y2 + 6y + 9 – 5y – 15 + 6 = 0

               y2 + y = 0

    JAWABAN : C

  2. Diketahui sebidang tanah berbentuk persegi panjang luasnya 72 m2. Jika panjangnya tiga kali lebarnya, maka panjang diagonal bidang tersebut adalah … m.

    A. 6\sqrt{2}

    B. 6\sqrt{6}

    C. 4\sqrt{15}

    D. 4\sqrt{30}

    E. 6\sqrt{15}

    PEMBAHASAN :

    p = 3l

    p x l = 72

    3l x l = 72

    3l2 = 72

    l2 = 24

    l = \sqrt{24}

        p = 3l = 3. 2\sqrt{6} = 6\sqrt{6}

    Diagonal = \sqrt{p^2 + l^2}

             = \sqrt{(3\sqrt{24})^2 + (\sqrt{24})^2}

             = \sqrt{9.24 + 24}

             = \sqrt{216 + 24}

             = \sqrt{240}

             = 4\sqrt{15}

    JAWABAN : C [Sudah Dikoreksi]

  3. Pak Musa mempunyai kebun berbentuk persegi panjang dengan luas 192 m2. Selisih panjang dan lebarnya adalah 4 m. Apabila disekeliling kebun dibuat jalan dengan lebar 2 m, maka luas jalan tersebut adalah … m2.

    A. 96

    B. 128

    C. 144

    D. 156

    E. 168

    PEMBAHASAN :

    p – l = 4

    p x l = 192

    (4 + l) x l = 192

    4l + l2 = 192

    l2 + 4l – 192 = 0

    (l – 12)(l + 16) = 0

    l = 12 atau l = -16 (tidak memenuhi)

    p = 4 + l = 4 + 12 = 16

    Untuk menentukan luas jalan, kita partisi-partisi menjadi 8 yaitu :

    4 luas jalan yang berada di pojok-pojok kebun berbentuk persegi dengan panjang sisi 2cm : 4 x 22 = 16cm2

    2 luas jalan yang berada pada panjang kebun dengan panjang sisi 12cm dan lebar 2cm : 2 x (12 x 2) = 48cm2

    2 luas jalan yang berada pada lebar kebun dengan panjang sisi 8cm dan lebar 2cm : 2 x (8 x 2) = 32cm2

    Jadi luas jalan yang dibangun adalah 16 + 48 + 32 = 96cm2

    JAWABAN : A

  4. Diketahui akar – akar persamaan kuadrat 2x2 – 4x + 1 = 0 adalah m dan n. Persamaan kuadrat baru yang akar – akarnya \frac{m}{n} dan \frac{n}{m} adalah …

    A. x2 – 6x + 1 = 0

    B. x2 + 6x + 1 = 0

    C. x2 – 3x + 1 = 0

    D. x2 + 6x – 1 = 0

    E. x2 – 8x – 1 = 0

    PEMBAHASAN :

    y1 + y2 = \frac{m}{n} + \frac{n}{m}

           = \frac{m.m+n.n}{m.n}

           = \frac{m^2 + n^2}{mn}

           = \frac{(m+n)^2-2mn}{mn}

           = \frac{(-b/a)^2-2(c/a)}{c/a}

           = \frac{(4/2)^2-2(1/2)}{1/2}

           = \frac{4-1}{1/2} = 6

    y1.y2 = \frac{m}{n}.\frac{n}{m}

         = \frac{m.n}{n.m}

         = 1

    PK Baru : y2 – (y1 + y2)y + (y1.y2) = 0

              y2 – 6y + 1 = 0

    JAWABAN : A

  5. Persamaan 2x2 + qx + (q – 1) = 0 mempunyai akar – akar x1 dan x2. Jika x12 + x22 = 4, maka nilai q = …

    A. -6 dan 2

    B. -6 dan -2

    C. -4 dan 4

    D. -3 dan 5

    E. -2 dan 6

    PEMBAHASAN :

    x12 + x22 = 4

    (x1 + x2)2 – 2x1x2 = 4

    (-b/a)2 – 2(c/a) = 4

    (-q/2)2 – 2((q – 1)/2) = 4

    q2/4 – q + 1 = 4 (kalikan 4)

    q2 – 4q + 4 = 16

    q2 – 4q – 12 = 0

    (q – 6)(q + 2) = 0

    q = 6 atau q = -2

    JAWABAN : E

  6. Jika nilai diskriminan persamaan kuadrat 2x2 – 9x + c = 0 adalah 121, maka c = …

    A. -8

    B. -5

    C. 2

    D. 5

    E. 8

    PEMBAHASAN :

    D = 121

    b2 – 4ac = 121

    (-9)2 – 4(2)(c) = 121

    81 – 8c = 121

    81 – 121 = 8c

         -40 = 8c

          -5 = c

    JAWABAN : B

  7. Persamaan (1 – m)x2 + (8 – 2m)x + 12 = 0 mempunyai akar kembar, maka nilai m = …

    A. -2

    B. -3/2

    C. 0

    D. 3/2

    E. 2

    PEMBAHASAN :

    Akar kembar jika D = 0

    b2 – 4ac = 0

    (8 – 2m)2 – 4(1 – m)(12) = 0

    64 – 32m + 4m2 – 48 + 48m = 0

    4m2 + 16m + 16 = 0

    4(m2 + 4m + 4) = 0

    (m + 2)(m + 2) = 0

    m1,2 = -2

    JAWABAN : A [Sudah Dikoreksi]

  8. Jika x1 dan x2 adalah akar – akar persamaan kuadrat x2 + px + 1 = 0, maka persamaan kuadrat yang akar – akarnya \frac{2}{x_1} + \frac{2}{x_2} dan x1 + x2 adalah …

    A. x2 – 2p2x + 3p = 0

    B. x2 + 2px + 3p2 = 0

    C. x2 + 3px + 2p2 = 0

    D. x2 – 3px + 2p2 = 0

    E. x2 + p2x + p = 0

    PEMBAHASAN :

    misal :

    y1 = \frac{2}{x_1} + \frac{2}{x_2}

    y2 = x1 + x2

    y1 + y2 = (\frac{2}{x_1} + \frac{2}{x_2}) + (x1 + x2)

            = (\frac{2x_2 + 2x_1}{x_1.x_2}) + (x1 + x2)

            = (\frac{2(-b/a)}{(c/a)}) + (-b/a)

            = \frac{-2b}{c} + (-b/a)

            = \frac{-2p}{1} + (-p/1)

            = -3p

    y1.y2 = (\frac{2}{x_1} + \frac{2}{x_2}).(x1 + x2)

         = (\frac{2x_2 + 2x_1}{x_1.x_2}) + (x1 + x2)

         = (\frac{2(-b/a)}{(c/a)}).(-b/a)

         = \frac{-2b}{c}.(-b/a)

         = \frac{-2p}{1}.(-p/1)

         = 2p2

    PK Baru : y2 + (y1 + y2)y + (y1.y2) = 0

              y2 + (-3p)y + (2p2) = 0

              y2 – 3py + 2p2 = 0

    JAWABAN : D

  9. Suatu fungsi kuadrat mempunyai nilai minimum –2 untuk x = 3 dan untuk x = 0 nilai fungsi 16. Fungsi kuadrat itu adalah …

    A. f(x) = 2x2 – 12x + 16

    B. f(x) = x2 + 6x + 8

    C. f(x) = 2x2 – 12x – 16

    D. f(x) = 2x2 + 12x + 16

    E. f(x) = x2 – 6x + 8

    PEMBAHASAN :

    misal : f(x) = ax2 + bx + c

    substitusi x = 0 untuk nilai fungsi 16, sehingga :

       f(0) = a(0)2 + b(0) + c

       16 = c … (i)

    Substitusi x = 3 untuk nilai minimum -2, sehingga :

       f(3) = a(3)2 + b(3) + c

       -2 = 9a + 3b + c … (ii)

          f'(x) = 2ax + b

    substitusi titik x = 3 (titik minimum) untuk f'(x) = 0, sehingga :

       0 = 2a(3) + b

       b = -6a … (iii)

    substitusi (i) dan (iii) ke (ii), sehingga diperoleh :

       -2 = 9a + 3b + c

       -2 = 9a + 3(-6a) + 16

       -2 = 9a – 18a + 16

       -18 = -9a

         2 = a

             b = -12

    f(x) = ax2 + bx + c

    substitusi a = 2 , b = -12 dan c = 16

    f(x) = 2x2 – 12x + 16

    JAWABAN : A

  10. Nilai maksimum dari fungsi f(x) = –2x2 + (k+5)x + 1 – 2k adalah 5. Nilai k yang positif adalah …

    A. 5

    B. 6

    C. 7

    D. 8

    E. 9

    PEMBAHASAN :

    f(x) = –2x2 + (k + 5)x + 1 – 2k

    f'(x) = -4x + k + 5 = 0

      -4x = -(k + 5)

        x = (k + 5)/4

    substitusi nilai “x” ke fungsi :

    f(x) = –2x2 + (k+5)x + 1 – 2k

      5 = –2(\frac{k + 5}{4})2 + (k+5)(\frac{k + 5}{4}) + 1 – 2k

      5 = –2(\frac{k^2 + 10k + 25}{16}) + 4(\frac{k^2 + 10k + 25}{16}) + \frac{16-32k)}{16}

    5.16 = -2k2 – 20k – 50 + 4k2 + 40k + 100 + 16 – 32k

      80 = 2k2 – 12k + 66

    2k2 – 12k – 14 = 0

    2(k2 – 6k – 7) = 0

    2(k – 7)(k + 1) = 0

    k = 7 atau k = -1

    JAWABAN : C

  11. Absis titk balik grafik fungsi f(x) = px2 + ( p – 3 )x + 2 adalah p. Nilai p = …

    A. -3

    B. -3/2

    C. -1

    D. 2/3

    E. 3

    PEMBAHASAN :

    Titik balik = titik minimum.

      f(x) = px2 + ( p – 3 )x + 2

      f'(x) = 2px + p – 3 = 0

    substitusi x = p, sehingga diperoleh :

       2p2 + p – 3 = 0

       (2p + 3)(p – 1) = 0

       p = -3/2 atau p = 1

    JAWABAN : B

NOTE : silahkan dikoreksi dan berikan komentar jika ada kesalahan atau masih ada keambiguan dalam penyelesaian soal-soal ini.

About these ads

27 comments on “Pembahasan Soal Persamaan dan Fungsi Kuadrat UN SMA

  1. Dik :
    Luas = p.l
    72 = 3l.l
    72 = 3l^2
    l^2 = 72/3
    l^2 = 24
    l = V24
    l = 2V6

    p = 3l
    p = 3.2V6
    p = 6V6
    Diagonal (s) = Vp^2+l^2
    s = V(6V6)^2 + (2V6)^2
    s = V 36.6 + 4.6
    s = V 216 + 24
    s = V 240
    s = 2V60

  2. minta bantuannya dong untuk kerjakan soaxl ini
    1. Garis y= a + bx memotong parabola y = x kuadrat+ x + 1 di titik (X1,y1) dan (x2,y2). Jika x1+x2=2 dan X1X2=-1 maka a+b=….
    2. persamaan kuadrat dimana jumlah dari akar-akarnya adalah 1/6 adalah….

Berikan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Logout / Ubah )

Twitter picture

You are commenting using your Twitter account. Logout / Ubah )

Facebook photo

You are commenting using your Facebook account. Logout / Ubah )

Google+ photo

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s